New military goggles combine nightvision and thermal imaging

New military goggles combine nightvision and thermal imaging.

Special Forces operators with night vison googless

Nightvision and thermal imaging play similar — but very distinct — roles on the modern battlefield. Soldiers utilize night vision to illuminate their darkened surroundings while thermal imaging is employed to illuminate darkened targets. But until now, soldiers have had to carry separate imaging systems for each, which negatively impacts how quickly they can switch optics and acquire their targets. BAE Systems, however, announced Monday a new kind of optic that packs the functionality of both into a single unit.

“On today’s battlefield, this slower [two optic] approach, which is often further hampered by heavy smoke or bad weather, compromises soldiers’ safety and can reduce mission effectiveness,” a BAE release reads. “By integrating night vision and thermal targeting capabilities into one sight displayed on the soldiers’ goggles, BAE Systems’ new solution allows troops to more easily acquire targets and engage faster.”

While the optic itself is mounted on the soldier’s rifle, what it sees is actually beamed via a Bluetooth connection to a head-mounted display. This allows the warfighter to quickly toggle between the two modes at the push of a button. The US Army’s Night Vision and Electronic Sensors Directorate has awarded BAE a five-year $434 million contract to continue the optic’s development. There is no word yet on how much the finished products would cost or how soon they’ll actually actually make it to combat zones.

[Image credit: Getty (lead), BAE Systems (inline)]


Nixie: A Wearable Camera Drone in Development

Nixie The Wearable Camera That Flys On Demand


This just may take the cake in the selfie department. Nixie is a tiny drone that you wear on your wrist. When released, the drone flies around you shooting video, eventually returning back. Winner of Intel’s Make It Wearable contest, the Nixie wearable flying camera may just be a prototype at the moment, but with a powerful team and money behind them, you can expect to see it come to market soon.

Nixie is the first wearable and flyable camera that you carry on your wrist like a watch. A swiveling camera sits at the middle of four flexible bands, each with an extendable propeller. To launch the wearable drone, simply unfold the bands from beneath your wrist and Nixie is ready for takeoff.

Once aloft, the drone is designed to detect your presence and fly around you, pointing the camera at you in order to film your adventures. Nixie was built on Intel’s Edison wearables development system that gives it enough computing power to do things such as track you and avoid obstacles.

Check out the cool footage below that was captured on the Nixie prototype. Now let’s see how quickly these get banned in National Parks….

, ,

Jetpack Designed at ASU Assists in Running/Sprinting

Jetpack enables soldiers to sprint at Olympic speeds (VIDEO)

Researchers at Arizona State University with the help of DARPA are working on a new take on the science fiction-inspired jetpack. Unlike jetpacks of yesterday, this literally puts the wind at your back, enabling soldiers to run faster than ever before, sprinting at Olympic speeds.

“If you think of a Navy SEAL or an Army soldier that has to get in somewhere quick and do whatever they’ve gotta do, but maybe get out of there just as quickly, so these devices can really help soldiers to not only accomplish their goals and succeed in their missions, but potentially save human lives as well,” said ASU student Jason Kerestes.

Do you think steps like these will materialize in “future soldier” projects? And how much do you want a jetpack right this freakin’ minute, right?

The jetpack part of the larger ASU Research Matters project.

[Business Insider via Predator Intelligence/Facebook]

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

Aerogel must be one of the strangest supermaterials to ever exist. Ghostly and shimmering in appearance, it’s insanely light, incredibly strong, and an amazing thermal insulator. And its tricks look absolutely impossible when you see them up close.

Made for Fun

Aerogel material—often referred to as frozen smoke, solid smoke, solid air or blue smoke—is actually, like all the best things, the result of a wager. It was first created by Samuel Stephens Kistler in 1931, after he bet Charles Learned that he could replace the liquid in a jelly with gas, without causing shrinkage. Turned out, he was right!

To produce an aerogel, you take a normal gel and then—very slowly and carefully—remove the liquid, leaving behind just the solid structure. That process varies depending on the gel in question, but invariably requires some complex chemistry to facilitate removal of the liquid bysupercritical drying, which carefully avoids the liquid-gas transition by using pressure and temperature variation to go from liquid to solid to gas instead. Otherwise, the evaporation process can destroy the structure. The result is a substance that looks like the original gel but feels like expanded polystyrene to the touch.

And the material properties! Oh, the material properties. Just look at what it can do.

Aerogel Is an Amazing Insulator

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

All the trapped air in aerogel makes it a remarkable insulator. In fact, silicon aerogel has a thermal conductivity of about 0.03 W/mK in atmospheric pressure down to 0.004 W/mK in modest vacuum—values similar to those exhibited by air itself. Hold it to a flame, and you won’t notice much happen, either—silica aerogel doesn’t melt until it reaches upwards of 2,000 °F. No, really. Look.

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

Aerogel Is Insanely Light

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

It’s not all silica gel, though. Yes, graphene aerogel sounds like someone combined the twobuzziest of materials buzzwords—but the results are amazing. In fact, this graphene aerogel snatched the title of the world’s lightest material just a few of months ago—with a density lower than that of helium and just twice that of hydrogen at 0.16 mg/cm3. This stuff practically floats. (Incidentally, it’s got air inside, which means that it doesn’t.) The material was created using a new technique which involves freeze-drying solutions of carbon nanotubes and graphene to create a kind of carbon sponge. The resulting material is both strong and elastic, as well as incredibly light.

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

And It’s Surprisingly Strong, Too

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

Silica aerogel is also oddly strong. Just look at this image: it shows a 5-pound brick supported by a piece of aerogel which weighs just 0.07 ounces. That strength is a results of—brace yourself for this—its dendritic microstructure. All that means is that it’s made up of roughly spherical, nanoscale particles which are fused together in clusters. Those clusters are strung together in 3D shapes which are almost fractal, providing an endlessly complex and strong structure. It can even support the weight of a car:

Amazing Aerogel: Eight Looks at the Ghostly Supermaterial in Action

For all of these amazing properties, though, aerogel is still insanely expensive to manufacture, which is why there aren’t any consumer products made using the stuff. Yet. In the meantime, let’s just daydream of super-light, flame retardant, bullet-proof suits of armor. Not bad for a little bit of frozen smoke.


Roomscan app draws floorplan by tapping phone on the wall

If you’ve ever been in a situation where you needed to draw up a floor plan or recreate a room’s dimensions, then you’ll appreciate what RoomScan can do for you. This deceptively simple iOS app can do all that for you and all you need to do is tap on the walls.

RoomScan includes voice prompts to instruct you on what to do, but it’s all rather simple. You simply walk around the room, tapping the Apple device to the wall and waiting for the beep before you proceed to the next wall. You have to be careful though to include each wall that you want to be detected, meaning all those angled walls and corners that matter.


The seemingly magical ability is thanks to an oft underrated feature in most devices today: the motion sensor. RoomScan notes the data recorded by the motion sensor every time it is placed on a wall. From this data, the position, orientation and distance of each wall is calculated to draw up an accurate floor plan, more or less. Of course, there will be some inaccuracies, but the app allows you to input your own figures into the floor plan afterwards.

RoomScan comes in two flavors, free and pro. The free version allows you to scan a single room, while the paid pro version opens up more possibilities. You can scan multiple rooms and have RoomScan stitch them up together to create one whole floor plan. You can even pick your own colors. Also in the Pro version, you can add doors as you go instead of dragging and dropping them to the finished floor plan like in the standard version. The timelapse video below demonstrates how to use RoomScan to quickly recreate a floor plan. Other demos can be found here.

RoomScan is available on iTunes but is only compatible with Apple devices that have motion sensors in them. It also requires that they be running iOS 7 or higher. To unlock all the features that this app has to offer, better purchase the Pro version that costs $4.99.

VIA: RoomScan

via Slashgear

10 Amazing Man-made Substances



We all know that mankind is capable of genius. But if you scratch the surface of what we can come up with, even those of us who have already discovered chocolate-covered pretzels can be blown away. For instance, did you know that we have …

10One-Way Bulletproof Glass


The problems of the ultra-rich are different than yours or mine. Going by the market forces that gave us this entry, the ultra-rich worry about the fact that the bulletproof glass that may save their lives would also stop them from shooting back.

Enter one way ballistic glass: it stops bullets from one side only, allowing return fire. How is this wizardry achieved, you ask? By sandwiching two sheets of different plastics together — a brittle acrylic layer, and a softer, more elastic, polycarbonate layer. The acrylic forms a very hard surface under pressure. When a bullet strikes this side, the layer flattens it before shattering, dissipating its energy. It is then possible for the shock-absorbing back layer to contain the bullet (and the shards of acrylic) without breaking.

When shot from the other side however, the bullet hits the polycarbonate first, stretching it initially. This bending shatters the brittle acrylic behind, leaving no resistance once the bullet punches through, thus allowing the target to become the shooter. But don’t get too cocky — you just put a hole in your shield.

9Liquid Glass

Once upon a time, dish soap didn’t exist. In the past, pans were washed with soda, vinegar, silver sand, Vim or wire wool, but a new spray-on coating could save plenty of labor and make dish soap itself obsolete. Liquid Glass combines silicon dioxide with water or ethanol to make a spray that dries to form a layer of “flexible, super-durable glass“. The layer is invisible (500 times thinner than a human hair), non-toxic and repels liquids.

Liquid Glass would eliminate the need for scrubbing, and make most cleaning products unnecessary, because it also renders surfaces anti-bacterial. Microbes landing on the surface have a hard time staying there. Throw out your bleach and simply turn on to sterilize a kitchen sink. This means that in medical applications, a treated surface could be sterilised with only hot water, with no need for chemical disinfectants.

The coating can be used to treat plants fungal infections and to seal corks for better bottle seals. We aren’t trying to sell it here (promise!), but this stuff repels liquids, is non-toxic, flexible, anti-bacterial, breathable, durable and invisible. Oh, and its also dirt cheap. Either it’s a miracle, or the fine print is invisible, too. Time will tell.

8Amorphous Metal

Amorphous metal is a material that is allowing golf clubs to hit harder, bullets to strike with more force, engines and surgical knives to last longer. Contrary to its name, it combines the usual strength of metal with the surface hardness of glass. In the video above, two ball bearings are bounced, one on steel and one on amorphous metal. The bearing bounces much higher off the amorphous metal and keeps going for an uncomfortably long time.

The impact of the bearing actually leaves many small “pits” in the steel, meaning the steel absorbs and dissipates the energy of the impact. The amorphous metal is smooth however, meaning that all the energy of the impact is transmitted back to the bearing, causing the higher bounce.

Most metals have a crystalline atomic structure, which is very ordered and repetitive. Under impacts or other stress, planes of atoms in the metal can permanently ‘slip’ to form visible dents. Amorphous metal has a disordered, random atomic structure, meaning such slips are prevented and the atoms rebound to their initial position.


A plastic with incredible heat resistance, Starlite’s quality as a thermal insulator is actually so staggering that for a while people just assumed its inventor was deluded. Then, following the above TV spot, the British Atomic Weapons Establishment (AWE) got in touch. They subjected it to nuclear-flash-level bursts of heat, up to the level of 75 Hiroshimas. The sample was fine, if a little charred. One scientist remarked “Normally, we do a test every couple of hours because we have to wait for [the material] to cool down. We’re doing it every 10 minutes, and it’s sat there laughing at us.”

Unlike other high-performance insulators, Starlite produces no toxic fumes under heat and is also incredibly lightweight. The potential applications in space shuttles, firefighting suits, airliners or military use are endless, but Starlite has never left the lab. Inventor Maurice Ward died in 2011 without ever patenting or licensing his creation. All that is widely known is that it consists of “up to 21 organic polymers and copolymers, and small quantities of ceramics”.



First, imagine a porous substance of such low density that a 2.5 centimeter (1 in) cube of it could have the internal surface area of an entire football field. Next, stop taxing your imagination and accept that such a substance already exists. More a category than a specific material, Aerogel is a shape that certain substances can be molded into whose low mass makes it one of the greatest insulators we have (an Aerogel window 2.5 cm (1 in) thick has the heat-protective quality of a window that is 25 cm (10 in) thick.

All the lightest substances known to man are Aerogels. Silica Aerogel — essentially dried silicon gel — weighs only 3 times more than air. However, whilst being very brittle it can also support over 1000 times its own weight.Graphene Aerogel (pictured above) is made from carbon, and its solid component is 7 times lighter than air.

It has a spongy texture, and can be made simultaneously hydrophobic (repels water), and lipophilic (absorbs oil). For this reason it is being hyped as a method to mop up oil spills, because its massive internal surface area means it can absorb 900 times it owns weight. And its spongy texture means that once filled with oil, it can be ‘wrung out’, slung back in the water, and filled again. And you thought carbon was totally useless.



DMSO is a chemical solvent, originally a byproduct of wood pulping. It existed for almost 100 years before its medical potential was realized in the 1960s. A certain Dr Jacobs discovered that it penetrated skin quickly and deeplywithout damaging tissue. This means huge potential for carrying drugs across membranes and into the body without breaking skin, removing the danger of infection.

It has benefits of its own, reducing the inflammation associated with sprains, arthritis & burns and providing immediate pain relief that can last up to six hours. It also penetrates finger and toenails, meaning it can be used to deliver anti-fungal medications.

Unfortunately, DMSO has had its problems. When its medicinal potential was discovered, it was already commercially available as an industrial chemical. This wide availability also soured its appeal in the eyes of the drug companies — if they couldn’t patent and monopolize it, there would be no profit potential. Also, the fact that side effects include a strong case of garlic breath further reduces marketability, meaning DMSO is mostly used only within veterinary medicine.

4Carbon Nanotubes


A carbon nanotube is effectively a one-atom-thick sheet of carbon rolled into a cylinder. At a molecular level, the result looks like a roll of chicken wire and is the strongest material known to science. Six times lighter than steel and potentially hundreds of times stronger, the tubes also conduct heat more effectively than diamond and conduct electricity more effectively than copper.

Being so thin, they are naturally invisible to the naked eye, and a collection of nanotubes in their raw state looks similar to a petri dish full of soot. To be able to harness their mechanical (and electronic) properties requires the ‘spinning’ of many trillions of these invisible strings, which wasn’t possible until relatively recently.

One of the more striking potential uses is making cables for an elevator into outer space (a fairly old and, until recently, totally impractical idea, due to the impossibility of making a 100,000 kilometer (62,000 mile) lift cable that wouldn’t collapse under its own weight). They could also be used to cure cancer — thousands can fit into an individual cell, and coating them with folic acid causes them to target and bind with cancer cells. The tubes would then be heated with an infrared laser, ideally causing those cells to die. Other uses include stronger, lighter body armor, more efficient windmill blades on wind farms, and making the slickest cheese slicer you can imagine.



In 1942, the Brits had a problem. They needed aircraft carriers to help combat German U-Boats, but there was no spare steel to build any. A man called Geoffrey Pyke thought that maybe a huge floating ice island might be the answer, but this idea had been suggested (and then ridiculed and dumped) two years previously. Ice may be cheap, but it also shatters without much provocation or eventually melts.

However, a couple of New York scientists hit upon a mixture of ice and wood pulp that not only floated, but was as bullet-resistant as brick, shatterproof and didn’t melt. The material could be machined like wood, or cast into shapes like a metal. In water, an insulating shell of wet wood pulp would form, preventing further melting, and any ship made from it could theoretically be repaired whilst still at sea.

But for all its surprising qualities, Pykrete was ultimately not fit for its intended purpose. A 1,000-ton scale model was quickly built and kept frozen by a single-horsepower motor, but it was found that the ice would sag over time unless kept to a temperate of -16 degrees F, which would require a complicated system of ducts. It was also pointed out that the large amount of wood pulp required would be enough to seriously affect paper production. Pykrete ultimately remained a creative, fascinating and unworkable failure.



Concrete ages over time, taking on the sickly polluted-grey look we all know and developing fractures in the process. Repairs are time-consuming and expensive — if the foundation of a building cracks, there’s often no easy way of fixing it. Many buildings in earthquake zones have been simply torn down for this reason.

But a group of students at Newcastle University (UK) have produced a genetically modified microbe, that has been “programmed to swim down fine cracks in concrete [and produce] a mixture of calcium carbonate and bacterial glue … to ‘knit’ the building back together”.

The “programming” of the BacillaFilla spores mean they only start germinating on contact with concrete, can sense when they reach the bottom of cracks (repair isn’t activated until they do), harden to the same strength as the surrounding concrete, and have a built-in self destruct gene to stop them going rogue and producing massive concrete tumors. There are also environmental implications — 5% of all man-made carbon dioxide is from the production of concrete. It is hoped the spores will be able to prolong the life of structures that would be very costly to rebuild.


Impact protection has always been a difficult problem — how do you make something that offers real protection without becoming too heavy or inflexible?Plastic knee-pads, for example, restrict movement and can still transmit impacts to bone.

D30 offers an ingenious fix to this problem. It’s a material made of ‘intelligent molecules’ that move freely (like Play-Doh) under gentle pressure, but lock upwhen struck hard. Jackets are already on the market containing D30 pads that offer flexibility, as well as protection from the tarmac, baseball bats or fists you might accidentally walk into. The pads are low-profile, making the jackets suitable for stuntmen or even police.

The material actually works on a familiar principle, similar to the mixture of cornstarch and water you remember from elementary-school science experiments. (Some people even fill pools with the stuff.)

Throwable Camera Prototype Guarantees Pitch Perfect Photography


Throwable Camera Prototype Guarantees Pitch Perfect Photography

It turns out that making a throwable camera isn’t that tricky. But making a throwable camera that doesn’t capture random obscure images, or spinning video that induces motion sickness, is kind of hard. In fact it’s taken Steve Hollinger years to develop such a camera, but with the Squito—his latest prototype—it looks like he’s almost nailed it.

As demonstrated, the ball features a series of built-in cameras looking out in all directions that are able to take photos of people as it sails through the air using intelligent image recognition. It’s also able to capture sweeping panoramas, full 360 degree images by automatically stitching together multiple exposures, and even full stabilized video.

But besides serving as a novel way to take a selfie, Holinger’s designed the Squito with several practical applications in mind. Thermal imaging and night vision capabilities coupled with the ability to wirelessly broadcast images makes it a useful tool for rescue personnel trying to assess a dangerous situation. Multiple Squitos can even be thrown at the same time to capture a wider field of view.

And most importantly, one day it’s going to totally revolutionize the baseball instant replay. The only thing standing between the Squito dream and reality is enough funding to perfect and commercialize this prototype. [Serveball via Engadget]